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TWO-DIMENSIONAL INCOMPRESSIBLE VISCOUS FLOWS 
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SUMMARY 

We design an artificial boundary condition for the steady incompressible Navier-Stokes equations in 
streamfhction-vorticity formulation in a flat channel with slip boundary conditions on the wall. The new 
boundary condition is derived fiom the Oseen equations and the method of lines. A numerical experiment for the 
non-linear Navier-Stokes equations is presented. The artificial boundary condition is compared with Dirichlet and 
Neumann boundary conditions for the flow past a rectangular cylinder in a flat channel. The numerical results 
show that our boundary condition is more accurate. 
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1. INTRODUCTION 

Many numerical simulations of viscous flow problems in physically unbounded domains are carried 
out in 'truncated' bounded computational domains with an artificial boundary. Artificial boundary 
conditions such as Neumann or Dirichlet boundary conditions are then prescribed at the artificial 
boundary. In general the above artificial boundary conditions are only very rough approximations of 
the exact boundary condition at the artificial boundary. Hence the bounded computational domain 
must be quite large when high accuracy is required, so the cost of the computation is increased. In 
order to limit the computational cost, the artificial boundary is often chosen not too far from the 
domain of interest. The proper specification of the boundary condition at a given artificial boundary 
for solving partial differential equations on an unbounded domain has been studied. For example, 
Goldstein' and Feng2 studied Helmholtz-type equations and designed asymptotic radiation conditions 
at the given circle artificial boundary. Han and W d 4  presented a sequence of artificial boundary 
conditions with high accuracy for the Laplace equation and the linear elasticity system. Hagstrom and 
Kelle? obtained the exact boundary condtion and artificial boundary conditions at an artificial 
boundary for partial differential equations in a cylinder, which were used to solve the non-linear 
problem.6 Halpern' and Halpern and Schatzman' developed a family of artificial boundary conditions 
for the unsteady Oseen equations, which was then applied to the unsteady Navier-Stokes (N-S) 
equations. Nataf designed an open boundary condition for the steady Oseen equations in a flat 
channel with slip boundary conditions on the wall. Hagstrom'o*ll proposed asymptotic boundary 
conditions at an artificial boundary for the simulation of timedependent fluid flows. Recently Han el 
al." designed a discrete artificial boundary condition for a system of linear N-S equations in a flat 
channel with no-slip boundary conditions on the wall. 
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The purpose of this paper is to design a discrete artificial boundary condition for steady 
incompressible viscous flows in a channel using the method of lines.13 

2. NAWER-STOKES EQUATIONS AND OSEEN EQUATIONS 

Throughout this paper we consider the numerical simulation of a steady incompressible viscous flow 
m u n d i n g  a body (domain ni) in a channel defined by R! x [0, L] with a slip boundary condition on 
the wall. The N-S equations in the domain SZ = R x (0, L) \ Bi are 

and the boundary conditions are 

au au ap 
ax a y h  

u - + v - + - =  VAU,  

a u a v  -+ -=o  
& ? Y  

(3) 

u(x, y) 4 urn = const. and v(x,y) + 0 when x f m ,  (6) 

where u and v are the components of velocity in the x- and y-co-ordinate directions respectively, p is 
the pressure, v > 0 is the kinematic viscosity and cI2 is the tangential stress on the wall. 

Let $ and a denote the streamfunction and vorticity; then 

-V, 
w -- w _ -  

?Y -u l l ,  a x -  
a v a u  a = - - -  
& *’ 

From the equations and boundary conditions (1x6)  we have 

v A a = O  i n n ,  
h a 0  

u - + v - -  
k ? Y  

(7) 

(9) 

$-+$rn(y)=ud and o-+O whenx+foo,  (1 3) 
where a / h  denotes the outward normal derivative. 
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Taking two constants b < c such that ai c (b, c) x (0, L), 52 is divided into three parts Qb, nT and 
52" by the artificial boundaries r b  = {x = b, 0 < y < L)  and rc = {x = c, 0 < y < L), with 

Qb = {(x,y)l - 00 < x < b, 0 < y < t), 
QT = {(x,y)lb < x < c, 0 < y < L )  \ ai, 
52' = {(x,y)lc < x < 00, 0 < y < L). 

When Jbl and c are sufficiently large, in the domain nb U iY the velocity (u, v) is an almost constant 
vector (u,, 0). Thus the N-S equations (1H3) can be linearized in the domain (and Qb),  namely 
the solution o, and $ of the problem (7H13) approximately satisfies the problem 

aw 
ac 

Am - u, Re- = 0 in 52', 

A $ + o = O  inn",  (1 5 )  

JI + $m@) and o + 0 whenx -+ 00, 

where Re = l / v .  Let 

G(x,y) = o(x,y),  $(x, r) = $(x* Y )  - $,@I* (18) 
Since $,@) is a polynomial of degree one, it is straightforward to check that G and $ satisfy equations 
(1 4) and ( 15) and the boundary conditions 

$ly=O.L = GIy=O,L = 0, c < x < 00. (19) 

$(x,y) -+ 0 and 6(x,y) + 0 when x -+ 00. (20) 
Because the boundary condition on the artificial boundary rc is unknown, equations (14) and (15) 

with boundary conditions (19) and (20) represent an incompletely posed problem. It cannot be solved. 
Let 

$lx=c = $'@> and GIx=" = G'@h 0 < y < L. (21) 
For given functions $,&) with $.,(O) = $"(L) = 0 and Gc@) with GJO) = &&) = 0 we discuss the 
numerical solution of equations (14) and (15) with boundary conditions (19x21) and design a 
discrete artificial boundary condition on the segment rc for the problem (7x13). 

3. AN ARTIFICIAL BOUNDARY CONDITION 

We now consider the semidiscretization approximation of the problem (14), (15), (19x21). Let 
Ay = L / N  be the mesh size, where N is a positive integer. The domain 52" is divided into N strips, i.e. 
52 =q=lak,Where * 

52, = ((X,y)lC < X < 00, (k - l)Ay Z y k - 1  < y  < yk = kAy). 

The following semidiscretization scheme is used to solve equations (14) and (15) with boundary 
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conditions (1 9 x 2  1): 

Let 

x(X)=[&l(X), . . .$  O N - I ( X ) ,  &I(X), $N-1(x)IT- 

Then the problem ( 2 2 x 2 6 )  is equivalent to the following ordinary differential system with constant 
coefficients. Find X such that 

B(X) + A&(x) + B&(X) = 0, (27)  

lim X(x)  = 0,  (28) x +  w 
X ( C )  = xo, 

where A ,  and Bo are 2(N - 1)  x 2(N - 1) matrices given by 

A o = - u m R e ( l N ~ l  i), Bo= :o); 

hereZNPI isthe(N-l)x(N-l)unitmahixand 

Do = B 

-2 1 0 ... 0 0  
1 -2 1 ... 0 0  
0 1 -2 ... 0 0  

. .  . .  

0 0 * . .  1 -2 1 

0 0 0 1 -2 

, 

with 
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Because A ,  and Eo are constant matrices, we can get the solution of the problem (27), (28) directly. Let 
$(x-c),  be a solution of the system of ordinary differential equations in (27). Then we know that 
constant I, and non-zero vector c are a solution of the eigenvalue problem 

(A21, - 2 + M, + B,) , = 0. (29)  

Using the special construction of the matrices A, and Eo, we can get the eigenvalues and 
eigenvectors of (29) immediately. In fact, since c # 0, we have 

0 = det(A2Z, - + Mo + E,) 

= det((A2 - urn Re l ) I ,  - + Do] det(A21, - + Do), 
namely 

det(A2IN_ + Do) = 0 or det[(12 - lu, Re)Z,- + Do] = 0. (30) 

Since Do is a special tridiagonal N - 1 matrix, the eigenvalues ( p i )  and corresponding eigenvectors 
{qi) of Do are given by 

pi = 2 8  [-I +COS t i ) ] ,  1 < i < N - 1, 

q .  = 1 [sin(!!), sinf;), ..., sin( (N  - 1)in )IT. (31) 
' J (1 ;=-,I [ s i n ( i Z ~ / N ) ] ~ }  

Hence we obtain the eigenvalues of the problem (29)  as 

, 1 < i <  N - 1  

( A i - -  Re;,)' -- - R g u L  + 2 8  [I -cos(( i +  1 - N)n )], N < i < 2 N - 2 .  (32)  

From the boundary condition lim, + rn X(x)  = 0, l j  must be taken negative; then we have 

-J ( 2 8  [l -cos(# 

[%-/{?+2/3 2 

1 G i g N - 1 ,  
l i  = 

[I -COS( (i + 1 - N ) n  )]) N < i < 2 N - 2 .  

Let 

ai = -Re u,li,  N < i < 2N - 2 ,  

z i = q i ,  1 < i < N - 1 .  
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By computation we obtain the eigenvectors si (1 d i d 2N - 2) of the problem (29) corresponding to 
Ai : 

[O, 0, . . . , O,z;lT, 1 d i d N-1, 

N d i d 2h' - 2. , 
Ci  = 

satisfied the system of ordinary differential equations (27) and the boundary condition 
limx,,X(x)=Oforanyconstantsbl,b2 ,..., b Z N - 2 .  

Differentiating (33) ,  we have 

X(C) = Yb, (36) 

X(c) = YY-'X(c). (37) 
Let 

a x )  = [01(x), 02(x), . - * 1 0,- 1(Xh *1(x), * 2 w  * - * 9 *,- &)IT; 
then 

Z(c) = X(c) + d ,  i ( c )  = k(c), 
where 

d = [O,O, . . ., 0, u,Ay, 2u,Ay, . . . , ( N  - l)u,AyIT E w2N-2. 
Substituting (37) into (38), we obtain the following discrete artificial boundary condition on the 
artificial boundary r,: 

Z(c) = zz(c) + s, (39) 

with 

T = YY-' ,  S = -YY-'d.  

In a similar way we can get the artificial boundary condition on the boundary rb. 
Assume that {Zk(y), k = 0 , 1 .  ..., N) is a basic set of interpolating functions of r,, e.g. 
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(&), k = 0.1, . . . , N) is Lagrange interpolating polynomial. Then we have 

The last equalities in (40) and (41) are from 

Then we have 

0 1 1 0  ... 4v-Ib) O 1- Z,b) ... ZN-Ib) 0 ..- 
0 ... Li = 

Them on the domain QT the original problem (7H13) can be approximated by equations (7) and (8) 
and 

a w a w  
a x *  u-+v- -vAo=O innT, (43) 

Furthermore!, we can also use a higher-order semidiscretization scheme, such as a fourth-order 
standard finite difference scheme or a Chebyshev scheme, to discretize equations (14) and (15) with 
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boundary conditions (19x21). Then the problem is also reduced to the ordinary differential equation 
system with constant coefficients given by (27) and (28), which can be reduced to the eigenvalue 
problem (29), but the constructions of the matrices A .  and Bo are different for the various 
semidiscretization schemes. In the general case the solution of the eigenvalue problem (29) cannot be 
given directly. Let q = I s ;  then the problem (29) is equivalent to the following standard eigenvalue 
problem. Find I E R and a non-zero vector (s, q)T E R4N-4 such that 

(-i0 _IA0) (:) = (;)* (49) 

The problem (49) can be solved by numerical methods and the approximate eigenvalues and 
corresponding eigenvectors of (49) can be obtained. Similarly we can obtain the discrete artificial 
boundary conditions by using different semidiscretization schemes. 

4. NUMERICAL IMPLEMENTATION AND EXAMPLE 

We now consider the numerical solution of the original problem (7x13)  on the given computational 
domain nT. The steady state solution is computed as the limit in time of the unsteady N-S equations, 
which are discretized by an AD1 method.'4 The inflow boundary conditions 

W y )  = $&I and w(b,y) = 0, 0 < y < L,  (50) 

are prescribed on the artificial boundary rb. On the artificial boundary rc the following three different 
types of outflow boundary conditions on w and JI are used in the example for comparison. 

l)pe I.  Dirichlet boundary conditions 

WY) = +m6J) and w(c,y) = 0, 0 < y < L. 
Trpe ZZ. Neumann boundary conditions 

l)pe ZZZ. Discrete artificial boundary condition (39) or (42). 

In the example the results are compared with an 'exact solution'. This solution is obtained by using 
an outAow boundary very far from the obstacle and with Nuemann boundary conditions on this 
outflow boundary. To be precise, the distance between the inflow boundary and the outflow boundary 
for the 'exact solution' is 11 times as long as H, where H is the length of the edge of the obstacle. In 
our example H = 0.4. 

Example 

defined by the domain 
Consider the fluid flow in a horizontal channel with a rectangular cylinder obstacle. The obstacle is 

Qi = ( (x ,Y)  10.8 < x < 1.2, $L < y < f L ) .  

The bounded computational domain QT is given by 

QT = {(x,y) I b < x < c, 0 < y .c L}  \ fii. 
andJI,(y)=u,y. Wetakeb=O,L= l-O,andu,= 1.0. 
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Table I. Re = 10, c = d = 2.4  

Error i = I  i = I1 i = I11 

err(- - oi) 0.4167 0.1593 2.9279 x lo-’ 
err(kE - $ i )  1.3476 x 8.8275 x 2.2779 x 

Table 11. Re = 50, c = d = 2.4 

Error i = I  i = I1 i = 111 

err(o, - oi) 3.9956 0.2499 1.2960 x lov2 
e 4 k E  - $i) 0.1040 1.7086 x lo-’ 5.0647 x lop4 

Table 111. Re = 100, c = d = 2.8 

Error i = I  i = I I  i = 111 

err(% - mi) 4.702 1 0.1473 1.5132 x lo-’ 
~ J I E  - ki)  0.1202 1.0591 x lo-’ 6.3449 x 

Let (aE, JIE) denote the ‘exact solution’ and (oi, +i) ( i  = I, 11, 111) denote the numerical solutions 
corresponding to the boundary conditions of types I, I1 and 111 respectively on the artificial boundary 
rc. The errors oE - oi and +E - +i on the segment r d  = {x = d, 0 < y < L) are given for various 
Reynolds numbem Let 

Then the errors err(oE - oi) and err(+E - +J are given in Tables 1-111 for Re = 10, 50 and 100 
respectively. 

Furthermore, the errors oE - oi and $E - +i on the segment r d  for Re = 100 are shown in Figures 
1 and 2 respectively. 

0. 1 0 2  a3 0.4 0.5 

Figure 1. Error~-oronsegmntrs;Re= 1 0 0 , c = d = 2 . 8  
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Figure 2. Error SE = $, on segment r d ;  Re = 100, c = d = 2.8 

Table IV Re = 10, d=2.0 

c = 2-0 2-4 2-8 3.2 

err(wE 1.214 2.518 I O - ~  7.706 x lo-’ 1.264 x lo-’ 
m(SE - $m) 7.378 x 1.571 x lo-’ 1.724 x 2-899 x 

Table X Re = 50, d = 2.0 

c = 2.0 2.4 2.8 3.2 

err(% -om) 4.257 x lo-’ 2.626 x lod4 2.202 x lo-’ 6.023 x 
err($E - $m) 1.508 lo-’ 4.300 x lo-’ 3.410 x 1 0 - ~  2.456 x lo-’ 

Table VI. Re = 100, d = 2.4 

c = 2.4 2.8 3.2 3.6 

m(% - mr) 3.384 x lo-’ 3.574 x lo-‘ 6.226 x lo-’ 1.959 x lo-’ 
err(@E - $m) 1.339 x lo-’ 5.342 x lo-’ 1.605 x 6.024 x lo-’ 

Tables I-III and Figures 1 and 2 show that the artificial boundary condition presented in this paper is 
more accurate than the Neumann and Dirichlet boundary conditions which am o h  used in the 
engineering literature. 

The influence of the artificial boundary location rc is shown in Tables N-W for various Reynolds 
numbers. 

The location of the artificial boundary has a strong influence on the computational accumy. 

5.  CONCLUSIONS 

An artificial boundary condition for the Navier-Stokes equations has been formulated based on an 
external linear flow field and the method of lines. Even though the artificial boundary condition is 
obtained from the Oseen equations on an external domain, it can be used to solve the non-linear 
Navier-Stokes equations. From the numerical results we can see that our artificial boundary condition 
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is more accurate than the Neuman and Dirichlet boundary conditions which are often used in 
engineering. For a given accuracy it is possible to compute the problem on a smaller computational 
domain by using our artificial boundary condition, thus saving computing time. 
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